1,690 research outputs found

    Non-commutative solitons and strong-weak duality

    Full text link
    Some properties of the non-commutative versions of the sine-Gordon model (NCSG) and the corresponding massive Thirring theories (NCMT) are studied. Our method relies on the NC extension of integrable models and the master Lagrangian approach to deal with dual theories. The master Lagrangians turn out to be the NC versions of the so-called affine Toda model coupled to matter fields (NCATM) associated to the group GL(2), in which the Toda field belongs to certain representations of either U(1)xU(1)U(1){x} U(1) or U(1)CU(1)_{C} corresponding to the Lechtenfeld et al. (NCSG1_{1}) or Grisaru-Penati (NCSG2_{2}) proposals for the NC versions of the sine-Gordon model, respectively. Besides, the relevant NCMT1,2_{1, 2} models are written for two (four) types of Dirac fields corresponding to the Moyal product extension of one (two) copy(ies) of the ordinary massive Thirring model. The NCATM1,2_{1,2} models share the same one-soliton (real Toda field sector of model 2) exact solutions, which are found without expansion in the NC parameter θ\theta for the corresponding Toda and matter fields describing the strong-weak phases, respectively. The correspondence NCSG1_{1} ↔\leftrightarrow NCMT1_{1} is promising since it is expected to hold on the quantum level.Comment: 24 pages, 1 fig., LaTex. Typos in star products of eqs. (3.11)-(3.13) and footnote 1 were corrected. Version to appear in JHE

    A Representation of the Virasoro Algebra via Wigner-Heisenberg Algebraic Technique to Bosonic Systems

    Full text link
    Using the Wigner-Heisenberg algebra for bosonic systems in connection with oscillators we find a new representation for the Virasoro algebra.Comment: Revised version. Revtex, 7 pages, no figures. This work was presented in the XXII Brazilian National Meeting on Particles and Fields (October/2001), to appear in Braz. J. of Phys., 33, 1 (2003

    Normal ordering and boundary conditions in open bosonic strings

    Full text link
    Boundary conditions play a non trivial role in string theory. For instance the rich structure of D-branes is generated by choosing appropriate combinations of Dirichlet and Neumann boundary conditions. Furthermore, when an antisymmetric background is present at the string end-points (corresponding to mixed boundary conditions) space time becomes non-commutative there. We show here how to build up normal ordered products for bosonic string position operators that satisfy both equations of motion and open string boundary conditions at quantum level. We also calculate the equal time commutator of these normal ordered products in the presence of antisymmetric tensor background.Comment: 7 pages no figures, References adde
    • …
    corecore